Suppression of an actin-binding protein, drebrin, by antisense transfection attenuates neurite outgrowth in neuroblastoma B104 cells.

نویسندگان

  • M Toda
  • T Shirao
  • K Uyemura
چکیده

Drebrins, actin-binding proteins, are dominantly expressed during embryogenesis and accumulated in neurite processes of postmigratory neurons. While the cytoskeletal proteins are the important factors for regulating neurite outgrowth, the cellular mechanism in neurons is still unclear. To address the role of drebrins in the neurite outgrowth, we have studied the effect of suppression of drebrin on a rat neuroblastoma B104 cell line, which constitutively expresses drebrin. Deprivation of serum or addition of gangliosides in the culture medium induced remarkable neurite outgrowth of B104 cells. We transfected B104 cells with an antisense construct of human drebrin E cDNA and found that the drebrin expression was significantly reduced in the stable antisense cell lines. In response to serum deprivation and gangliosides treatment, their ability to extend neurite processes was significantly attenuated. In contrast, the cell proliferation of the antisense transfectants was arrested by serum deprivation similar to control B104 cells. These data suggest that the drebrins are required for neurite outgrowth in neuronal cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formation of thick, curving bundles of actin by drebrin A expressed in fibroblasts.

Drebrin A is a neuron-specific protein, the expression of which is regulated during development. Upon transfection of fibroblasts with drebrin A cDNA, the protein is expressed at high levels in fibroblasts and the outgrowth of highly branched, neurite-like cell processes is induced. In this report, we describe a biochemical examination of the binding of drebrin A to actin filaments. We also dem...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

Process of Neurite Formation and Genetic Engineering

The process of neurite formation is an important event in neurobiology, especially for brain development, differentiation and nerve regeneration. The ultrastructural changes associated with neurite formation were examined using neuroblastoma cells and Drebrin (developmentally regulated brain protein) gene transfected cells in culture. Neurite formation of neuroblastoma cells was induced by seru...

متن کامل

Phosphorylation of Drebrin by Cyclin-Dependent Kinase 5 and Its Role in Neuronal Migration

Cyclin-dependent kinase 5 (Cdk5)-p35 is a proline-directed Ser/Thr kinase which plays a key role in neuronal migration, neurite outgrowth, and spine formation during brain development. Dynamic remodeling of cytoskeletons is required for all of these processes. Cdk5-p35 phosphorylates many cytoskeletal proteins, but it is not fully understood how Cdk5-p35 regulates cytoskeletal reorganization as...

متن کامل

Dystrophin Dp71 is required for neurite outgrowth in PC12 cells.

To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research. Developmental brain research

دوره 114 2  شماره 

صفحات  -

تاریخ انتشار 1999